Impacts on Influenza A(H1N1)pdm09 infection from cross-protection of seasonal trivalent influenza vaccines and A(H1N1)pdm09 vaccines: systematic review and meta-analyses

Authors: J. Kevin Yin¹,², Maria Chow¹,², Gulam Khandaker¹,², Catherine King¹,², Peter Richmond³,⁴,⁵, Leon Heron¹,²,⁶, Robert Booy¹,²,⁶

Affiliations: 1. National Centre for Immunisation Research and Surveillance, The Children’s Hospital at Westmead, NSW, Australia 2. School of Paediatrics and Child Health, University of Western Australia, WA, Australia 3. Department of Paediatric and Adolescent Medicine, Princess Margaret Hospital, WA, Australia 4. Vaccine Trials Group, Telethon Institute for Child Health Research, WA, Australia 5. Sydney Emerging Infections and Biosecurity Institute, NSW, Australia

Abstract:

Background

Cross-protection by seasonal trivalent influenza vaccines (TIVs) against pandemic influenza A H1N1 2009 (now known as A[H1N1]pdm09) infection is controversial; and the vaccine effectiveness (VE) of A(H1N1)pdm09 vaccines has important health-policy implications. A systematic review and meta-analysis is needed to assess the impacts of both seasonal and A(H1N1)pdm09 vaccines against A(H1N1)pdm09.

Methods

We did a systematic literature search to identify observational and/or interventional studies reporting cross-protection of TIV and A(H1N1)pdm09 VE from when reporting of the pandemic occurred (2009) until July 2011. The studies fulfilling inclusion criteria were meta-analysed. For cross-protection and VE, respectively, we stratified by vaccine type, study design and endpoint.

Results

Thirty-three studies with 3,019,399 subjects were included; meta-analyses of 26 studies revealed:

1) TIV: cross-protection for confirmed illness was 19% (95% confident interval [CI]=−13 to 42%) based on 13 case-control studies with notable heterogeneity; a higher and significant cross-protection of 34% (95% CI=9 to 52%) was found in a sensitivity analysis (when 5 studies were excluded due to moderate risk of bias); one RCT (7,334
subjects) reported a cross-protection of 38% (95% CI=19 to 53%) for confirmed illness while another with lower power (sample size=431) showed no difference. One case-control study reported a cross-protection of 50% (95% CI=40 to 59%) against hospitalised cases. No effect was detected on the risk of other endpoints (ILI, sickness absenteeism).

2) A(H1N1)pdm09 vaccines: VE for confirmed illness was 86% (95% CI=73 to 93%) based on 11 case-control studies (although notable heterogeneity was detected) and 79% (95% CI=22 to 94%) in two cohort studies; by contrast, against medically attended ILI, VE was 32% (95% CI=8 to 50%) in one cohort study.

Conclusion
TIVs provided moderate cross-protection against both laboratory-confirmed A(H1N1)pdm09 illness (based on 8 case-control studies with low risk of bias and one RCT) and also hospitalisation. A(H1N1)pdm09 vaccines were highly effective against confirmed A(H1N1)pdm09 illness. Although cross-protection was less than the direct effect of strain-specific vaccination against A(H1N1)pdm09, TIV was generally beneficial before A(H1N1)pdm09 vaccine was available.